756

References

- Miyasaka, T., Tanaka, H., Baba, M., Hayakawa, H., Walker, R. T., Balzarini, J. & De Clercq, E. (1989). J. Med. Chem. 32, 2507– 2509.
- Rigaku Corporation (1985a). AFD. Diffractometer Control Program System. Rigaku Corporation, Tokyo, Japan.
- Rigaku Corporation (1985b). RCRYSTAN. X-ray Analysis Program System. Rigaku Corporation, Tokyo, Japan.
- Stardent Computer Inc. (1990). ACV. Application Chemistry Viewer. Stardent Computer Inc., Mewton, Massachusettes, USA.
- Tanaka, H., Baba, M., Takahashi, E., Matsumoto, K., Kitaka, A., Walker, R. T., De Clercq, E. & Miyasaka, T. (1994). Nucleosides and Nucleotides, 13, 155–162.
- Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Nitta, I., Baba, M., Shigeta, S., Walker, R. T., De Clercq, E. & Miyasaka, T. (1992). J. Med. Chem. 35, 4713–4719.
- Yamaguchi, K. (1987). XPACK. Programs for X-ray Parameters Report. Showa Univ., Tokyo, Japan.
- Yamaguchi, K. (1993). Chem. Pharm. Bull. 41, 424-429.
- Yao, J.-X., Zheng, C.-D., Qian, J.-Z., Han, F.-S., Gu, Y.-X. & Fan, H.-F. (1985). SAP185. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China.

Acta Cryst. (1995). C51, 756-758

Tris(p-tolylsilyl)amine

NORBERT W. MITZEL, JÜRGEN RIEDE, ANNETTE SCHIER AND HUBERT SCHMIDBAUR

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany

(Received 14 June 1994; accepted 26 October 1994)

Abstract

The title compound, $C_{21}H_{27}NSi_3$, shows a virtually planar coordination geometry of the N atom. Unlike in $(PhH_2Si)_3N$, the three *p*-tolylsilyl substituents are not related by crystallographic symmetry.

Comment

The planar configuration of the N atom is the most striking structural feature of most of the silylated nitrogen compounds (Lucevics, Pudova & Strukokovich, 1989). Only a few exceptions of this general rule are known: aminosilanes with NH₂ substituents at bulky organosilyl groups (Ruhlandt-Senge, Bartlett, Olmstead & Power, 1993), two silylhydrazine compounds (Dressler, Niecke, Pohl, Saak, Schoeller & Schaefer, 1986; Schrenk & Mattes, 1988), and silylated hydroxylamines (Mitzel, Angermaier & Schmidbaur, 1994). In the latter two cases,

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved the deviation from a planar N-atom coordination geometry could be related to the electronegative bonding partners N in hydrazines and O in hydroxylamines, and lone-pair repulsion effects, as supported by theoretical calculations (Mitzel, Hofmann, Waterstradt, Schleyer & Schmidbaur, 1994).

All trisilylamines studied until now show a completely flat geometry at the N atoms. $(H_3Si)_3N$ (Hedberg, 1955; Beagley & Conrad, 1970), $(Me_2HSi)_3N$ (Ebsworth, Murray, Rankin & Robertson, 1981) and $(Me_3Si)_3N$ (Anderson, Rankin & Robertson, 1990) were studied by electron diffraction in the gas phase, and the solid-state structures of a few compounds were elucidated by single-crystal X-ray diffraction: $(H_3Si)_3N$ (Barrow & Ebsworth, 1984), $(Cl_3Si)_3N$ and $(Cl_3Si)N(SiCl_2)_2N(SiCl_3)$ (Wannagat, Flindt, Brauer, Büger & Dörrenbach, 1989), $(PhH_2Si)_3N$ (Mitzel, Schier & Schmidbaur, 1992) and some amines with mixed ligands (Mitzel, Schier, Beruda & Schmidbaur, 1992).

The present investigation of tris(*p*-tolylsilyl)amine, (I), is part of a more extensive study of the factors contributing to nitrogen planarization in Si-N systems.

A perspective view showing the atomic numbering scheme is given in Fig. 1. Selected bond lengths and angles are listed in Table 2.

Fig. 1. Plot of tris(p-tolylsilyl)amine. Displacement ellipsoids are plotted at the 50% probability level.

Experimental

Tris(*p*-tolysilyl)amine (I) was prepared by a known method (Mitzel, Riede, Schier, Paul & Schmidbaur, 1993) and crystallized by slowly cooling the melt diluted with a minimum amount of hexane to 253 K.

MITZEL, RIEDE, SCHIER AND SCHMIDBAUR

1 01 Table 2 Calestad . .

Crystal data	Table 2. Selected geometric parameters (Å, °)				
C21H27NSi3	Mo $K\alpha$ radiation	N—Sil	1.728 (2)	C23C24	1.389 (2)
$M_{\rm c} = 377.71$	$\lambda = 0.71073 \text{ Å}$	N—Si2	1.736 (2)	C24—C25	1.387 (2)
Monoclinic	A = 0.71075 A	N—Si3	1.735 (2)	C25—C26	1.390(2)
Monochine	Cell parameters from 25	Si1-C11	1.862 (2)	C21-C26	1.397 (2)
<i>P</i> 2 ₁	reflections	Si2C21	1.864 (2)	C31-C32	1.392 (3)
a = 9.710(1) A	$\theta = 15 - 19^{\circ}$	Si3-C31	1.858 (2)	C32C33	1.382 (3)
b = 7.386(1) Å	$\mu = 0.22 \text{ mm}^{-1}$	C11-C12	1.397 (2)	C33C34	1.386 (3)
c = 15,236(1) Å	T = 193 K	C12C13	1.387 (2)	C34—C35	1.390 (2)
c = 15.250(1) R	I = I J J K	C13C14	1.386 (2)	C35—C36	1.385 (3)
$\beta = 90.67(1)^{2}$	Needle	C14C15	1.388 (2)	C31C36	1.395 (3)
$V = 1092.6 \text{ A}^3$	$0.45 \times 0.40 \times 0.30 \text{ mm}$	C15C16	1.385 (2)	C14—C10	1.509 (2)
Z = 2	Colourless	C11—C16	1.394 (2)	C24C20	1.513 (2)
$D_{\rm r} = 1.148 {\rm Mg}{\rm m}^{-3}$		C21—C22	1.397 (2)	C34—C30	1.508 (3)
		C22—C23	1.386 (2)		
		Si1—N—Si2	120.0(1)	C32-C31-C36	117.9 (2)
Data collection		Si2—N—Si3	119.5 (1)	C31-C32-C33	121.0 (2)
		Si3—N—Si1	119.8 (1)	C32C33C34	121.1 (2)
Enraf–Nonius CAD-4	$\theta_{\rm max} = 27^{\circ}$	N—Si1—C11	111.7 (1)	C33C34C35	117.9 (2)
diffractometer	$h = -12 \rightarrow 12$	NSi2C21	116.5 (1)	C34—C35—C36	121.4 (2)
$\theta/2\theta$ scans	$k = -9 \rightarrow 9$	N-Si3-C31	111.2 (1)	C35C36C31	120.7 (2)
Absorption correction:	l = 0 10	C12C11C16	117.4 (1)	C12C11Si1	122.1 (1)
Absolption conection.	$i = 0 \rightarrow 19$	C11—C12—C13	121.3 (2)	C16—C11—Si1	120.4 (1)
none	3 standard reflections	C12-C13-C14	120.7 (2)	C10-C14-C13	120.4 (2)
4776 measured reflections	monitored every 100	C13-C14-C15	118.5 (1)	C10-C14-C15	121.1 (2)
4698 independent reflections	reflections	C14-C15-C16	120.8 (2)	C22—C21—Si2	121.0(1)
4530 observed reflections	intensity decay: 1.3%	C15-C16-C11	121.3 (2)	C26—C21—Si2	121.6(1)
$F > A_{-}(E)$	intensity decay. 1.5%	C22-C21-C26	117.4 (2)	C20—C24—C23	120.6 (2)
$[F > 4\sigma(F)]$		C21-C22-C23	121.1 (2)	C20-C24-C25	121.1 (2)
		C22_C23_C24	121.0 (2)	C32-C31-Si3	120.0(1)
D.C.		C23-C24-C25	118.1 (2)	C36-C31-Si3	122.0(1)
Refinement		C24—C25—C26	120.9 (2)	C30—C34—C33	121.0 (2)
Refinement on F	$\Delta a = 0.31 e Å^{-3}$	C25C26C21	121.1 (2)	C30—C34—C35	121.2 (2)
P = 0.0290	$\Delta a = 0.36 a^{1/3}$				
K = 0.0280	$\Delta \rho_{\rm min} = -0.36 \ {\rm e \ A}$	Calculations with	i the molecu	le and its inverse	yielded the
wR = 0.0304	Extinction correction: none	same R factors, a	nd were indi	stinguishable. Si-H	atoms were
S = 0.411	Atomic scattering factors	found and refined	isotropically	; aryl H atoms we	re found but

re t. not refined; for Me-H atoms one H atom was found for each group, the remainder were calculated. All were allowed to ride on their parent C atom with $U = 0.08 \text{ Å}^2$.

Data collection and cell refinement: CAD-4 Software (Enraf-Nonius, 1989). Data reduction: local programs. Programs used to solve and refine structure: SHELXTL-Plus/PC (Sheldrick, 1989).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: SE1070). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Anderson, D. G., Rankin, D. W. H. & Robertson, H. E. (1990). J. Chem. Soc. Dalton Trans. pp. 161-164.
- Barrow, M. J. & Ebsworth, E. A. V. (1984). J. Chem. Soc. Dalton Trans. pp. 803-806.
- Beagley, B. & Conrad, A. R. (1970). J. Chem. Soc. Faraday Trans. p. 2740.
- Dressler, U., Niecke, E., Pohl, S., Saak, W., Schoeller, W. W. & Schaefer, H.-G. (1986). J. Chem. Soc. Chem. Commun. pp. 1086-1087.

Ebsworth, E. A. V., Murray, E. K., Rankin, D. W. H. & Robertson, H. E. (1981). J. Chem. Soc. Dalton Trans. pp. 1501-1503.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Hedberg, K. (1955). J. Am. Chem. Soc. 77, 6491-6492.

Lucevics, E., Pudova, O. & Strukokovich, R. (1989). In Molecular Structure of Organosilicon Compounds. Chichester: Ellis Horwood.

Refinement on F	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.0280	$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.0304	Extinction correction: none
S = 0.411	Atomic scattering factors
4530 reflections	from International Tables
249 parameters	for X-ray Crystallography
Unit weights applied	(1974, Vol. IV)
$(\Delta/\sigma)_{\rm max} < 0.001$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	х	у	Ζ	U_{eq}
Sil	0.78888 (4)	0.00260	0.37506 (3)	0.03i (1)
Si2	0.85867 (5)	-0.3144 (1)	0.26074 (3)	0.033 (1)
Si3	0.82527 (6)	0.0552(1)	0.18173 (4)	0.046 (1)
Ν	0.8325 (2)	-0.0834 (2)	0.2736(1)	0.033 (1)
C11	0.5988 (2)	0.0070 (3)	0.3900(1)	0.026(1)
C12	0.5078 (2)	-0.0710 (2)	0.3293 (1)	0.029(1)
C13	0.3668 (2)	-0.0709 (3)	0.3428 (1)	0.030(1)
C14	0.3123 (2)	0.0048 (3)	0.4181 (1)	0.029(1)
C15	0.4018 (2)	0.0827 (3)	0.4789(1)	0.030(1)
C16	0.5425 (2)	0.0849 (3)	0.4648 (1)	0.029(1)
C10	0.1591 (2)	0.0002 (3)	0.4335(1)	0.042 (1)
C21	1.0409 (2)	-0.3935 (2)	0.2632(1)	0.029 (1)
C22	1.0970 (2)	-0.4768 (3)	0.3378 (1)	0.033 (1)
C23	1.2322 (2)	-0.5372 (3)	0.3395 (1)	0.033 (1)
C24	1.3164 (2)	-0.5166 (3)	0.2671 (1)	0.031 (1)
C25	1.2612 (2)	-0.4364 (3)	0.1923 (1)	0.031(1)
C26	1.1257 (2)	-0.3761 (3)	0.1902(1)	0.031 (1)
C20	1.4646 (2)	-0.5794 (3)	0.2705 (2)	0.043 (1)
C31	0.9893 (2)	0.0474 (3)	0.1202(1)	0.033 (1)
C32	1.1104 (2)	0.1114 (3)	0.1589(1)	0.040(1)
C33	1.2351 (2)	0.0958 (3)	0.1168 (1)	0.043 (1)
C34	1.2433 (2)	0.0184 (3)	0.0341 (1)	0.039 (1)
C35	1.1220 (2)	-0.0430 (3)	-0.0051 (1)	0.037 (1)
C36	0.9974 (2)	-0.0297 (3)	0.0369(1)	0.036(1)
C30	1 3798 (2)	-0.0003(4)	-0.0113(2)	0.062(1)

- Mitzel, N. W., Angermaier, K. & Schmidbaur, H. (1994). Organometallics, 13, 1762-1766.
- Mitzel, N. W., Hofmann, M., Waterstradt, E., Schleyer, P. von R. & Schmidbaur, H. (1994). J. Chem. Soc. Dalton Trans. pp. 2503-2508.
- Mitzel, N. W., Riede, J., Schier, A., Paul, M. & Schmidbaur, H. (1993). Chem. Ber. 126, 2027–2032.
- Mitzel, N. W., Schier, A., Beruda, H. & Schmidbaur, H. (1992). *Chem.* Ber. 125, 1053–1059.
- Mitzel, N. W., Schier, A. & Schmidbaur, H. (1992). Chem. Ber. 125, 2711–2712.
- Ruhlandt-Senge, K., Bartlett, R. A., Olmstead, M. M. & Power, P. P. (1993). Angew. Chem. 105, 495–461; Angew. Chem. Int. Ed. Engl. 32, 425–427.
- Schrenk, V. & Mattes, R. (1988). Z. Anorg. Allg. Chem. 566, 71-76.
- Sheldrick, G. M. (1989). *SHELXTL-Plus*. Release 4.0 for Siemens R3 Crystallographic Research System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wannagat, U., Flindt, R., Brauer, D. J., Bürger, H. & Dörrenbach, F. (1989). Z. Anorg. Allg. Chem. 572, 33–46.

p-Chlorophenyl 3,4,6-Tri-*O*-benzyl-2-deoxy-2-methylene-β-D-glucopyranoside

V. KABALEESWARAN AND S. S. RAJAN

Department of Crystallography and Biophysics, University of Madras, Madras 600 025, India

C. BOOMA AND K. K. BALASUBRAMANIAN

Department of Chemistry, Indian Institute of Technology, Madras 600 036, India

(Received 14 March 1994; accepted 19 September 1994)

Abstract

The title compound, $C_{34}H_{33}ClO_5$, has a β configuration at the anomeric centre C1. The pyranose ring adopts a chair conformation with all the substituents in equatorial positions. The molecular packing is achieved through van der Waals interactions.

Comment

The title compound was prepared as an intermediate to prove the mechanism of the reaction of a new Ferrier system (Booma & Balasubramanian, 1993*a*) with phenols (Booma & Balasubramanian, 1993*b*). Structure (I) was originally suggested for this compound but NMR NOE experiments indicated structure (II) with a β configuration at the anomeric centre C1 (Fig. 1). The present paper reports the X-ray structure, confirming this configuration in the crystal. A perspective view of the molecule is given in Fig. 1.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

The pyranose ring adopts a chair conformation ($\Delta C_m = 8.2^\circ$, $\Delta C_2 = 10.1^\circ$) (Duax, Weeks & Rohrer, 1976). All the phenyl rings are planar [$\chi^2 = 1.0, 19.0, 3.6$ and 2.8 for rings A (C8–C13), B (C14–C19), C (C22–C27) and D (C29–C34), respectively]; the angles between the planes are A–B 121.0 (3)°, B–C 137.0 (2)°, C–D 147.1 (2)°, A–D 128.9 (3)°, A–C 18.5 (2)° and B–D 16.4 (2)°. The moiety C6–O2–C7–C8 is planar and makes an angle of 27.7 (4)° with ring A.

The C28—O5 bond is synplanar with respect to the C29—C34 bond. The substituents at C1, C3, C4 and C5 are all in equatorial positions. The packing in the unit cell is governed only by van der Waals interactions.

Fig. 1. A perspective view of the title compound.

Experimental

Crystal data

C₃₄H₃₃ClO₅ $\lambda = 1.5418 \text{ Å}$ $M_r = 558.093$ Orthorhombic $P2_{1}2_{1}2_{1}$ reflections a = 8.236(3) Å $\theta = 15 - 25^{\circ}$ b = 14.967 (4) Åc = 24.032(5) Å T = 293 K $V = 2962 (1) \text{ Å}^3$ Needle Z = 4 $D_x = 1.24 \text{ Mg m}^{-3}$ Colourless $D_m = 1.25$ (2) Mg m⁻³ D_m measured by flotation

Data collection

Enraf–Nonius diffractometer				
$\omega/2\theta$ scans				
Absorption correction:				
none				
2538 measured reflections				
2538 independent reflections				
2214 observed reflections				
$[l > 3\sigma(l)]$				

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 25 reflections $\theta = 15-25^{\circ}$ $\mu = 1.4 \text{ mm}^{-1}$ T = 293 KNeedle $0.24 \times 0.12 \times 0.10 \text{ mm}$ Colourless Crystal source: recrystallized from CHCl₃-EtOH

 $\theta_{\text{max}} = 60^{\circ}$ $h = 0 \rightarrow 8$ $k = 0 \rightarrow 16$ $l = 0 \rightarrow 26$ 3 standard reflections monitored every 200 reflections intensity decay: <3%

[†] DCB contrubution No. 840.